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Abstract—Track-to-track fusion using estimates from multiple
sensors can achieve better estimation performance than a single
sensor. If the local sensors use different system models in dif-
ferent state spaces, the problem of heterogeneous track-to-track
fusion arises. Compared with homogeneous track-to-track fusion
that assumes the same system model for different sensors, the
heterogeneous case poses two major challenges. First, the model
heterogeneity problem, namely, that we have to fuse estimates
from different state spaces (related by a certain nonlinear trans-
formation); second, the estimation errors’ dependence problem,
which is generally recognized as the “common process noise
effect”. Different heterogeneous track-to-track fusion approaches,
namely, the linear minimum mean square error approach and
the maximum likelihood approach, are presented and compared
with the corresponding centralized measurement tracker/fuser.

Index Terms—heterogeneous track-to-track fusion, multisensor
tracking, linear minimum mean square error, maximum likeli-
hood fusion

I. INTRODUCTION

In a multisensor tracking system the optimal estimate of a

target’s state can be obtained by a centralized tracker/fuser

(CTF), i.e., directly sending to the fusion center (FC) all

the measurements of the local sensors. However, in many

practical situations, because of communication constraints,

each local sensor has its own information processing system

and sends only tracks to the FC, which fuses appropriately

tracks from different local sensors to achieve comparable

estimation performance to that of the CTF [3].

For track-to-track fusion (T2TF) from homogeneous local

sensors, which use the same target state space, the “common

process noise effect”, quantified by the crosscovariance matrix,

and the hierarchical tracking with different configurations for

the real world have been theoretically well-established [3].

However, there is no known way for the calculation of the

crosscovariance matrix in the case of heterogeneous local

sensors. The difficulty to evaluate the crosscovariance matrix

in the heterogeneous case is that it requires to capture the

“common” part of process noises from different state spaces

to quantify the crosscorrelation.

In the literature there are few works dealing with the model

heterogeneity. A heterogeneous T2TF fusion approach was

presented in [6] to fuse the tracks from an active sensor and

a passive sensor with different state vectors. However, the

fusion was done by using the full Cartesian state estimates
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(from an active sensor) to update the smaller angular state

estimates (from a passive sensor). An expression for the steady

state crosscovariance matrix for dissimilar sensors (of the same

state vector but with different measurement noise variances)

employing α–β filters was derived in [8]. For the specified

case, a condition to guarantee the crosscovariance matrix’s

positivity was presented, which does not always hold in the

heterogeneous case.

The goal of this paper is to fuse the tracks from heteroge-

neous local sensors (an active and a passive one) with different

state spaces to yield fused estimates in the full state space

and evaluate the performance of the resulting heterogeneous

T2TF. The fusion configuration considered is the one without

memory at the FC and no feedback to the local sensors

(T2TFwoMnf in the terminology of [9]).

In view of the fact that there is no known way to evaluate

the crosscovariance of the estimation errors in the case of

heterogeneous sensors, a Monte Carlo (MC) investigation of

these errors’ crosscorrelations is carried out.

The paper is organized as follows. Section II formulates

the heterogenous T2TF problem. Two approaches, namely,

the linear minimum mean square error (LMMSE) and max-

imum likelihood (ML) heterogeneous T2TF are presented in

Section III. The crosscorrelation analysis by MC simulations

is presented in Section IV. Section V evaluates the proposed

approaches in a tracking scenario with an active sensor and a

passive sensor. Section VI provides conclusions.

II. THE HETEROGENOUS TRACK-TO-TRACK FUSION

PROBLEM

Without loss of generality, consider the following state-

space models

xi(k + 1) = f i[xi(k)] + vi(k) (1)

zi(k) = hi[xi(k)] +wi(k) (2)

at sensor i and

xj(k + 1) = f j [xj(k)] + vj(k) (3)

zj(k) = hj [xj(k)] +wj(k) (4)

at sensor j. In the above, fs[·] and hs[·], s = i, j, are different

and can be nonlinear; vs(·) and ws(·), s = i, j, are the process

and measurement noises, respectively.

Further, note that xi and xj are in different state spaces. Let

xi be the larger dimension state (e.g., full Cartesian position
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and velocity in 2-dimensional space for tracking with an active

sensor)

xi = [ x ẋ y ẏ ]′ (5)

and xj be the smaller dimension state (e.g., angular position

and velocity for tracking with a passive sensor)

xj = [ θ θ̇ ]′ (6)

These state vectors have the nonlinear relationship

xj Δ
= g(xi) (7)

The two sensors are assumed synchronized1 and the time index

k for sampling time tk will be omitted if there is no ambiguity.

The corresponding estimates at these heterogeneous local

sensors are x̂i with covariance matrix

P i = E[(xi − x̂i)(xi − x̂i)′] (8)

and x̂j with covariance matrix

P j = E[(xj − x̂j)(xj − x̂j)′] (9)

The problem is how to carry out the fusion of the estimate

x̂i with P i and the estimate x̂j with P j to achieve a better

estimation performance for the full state of interest xi.

III. THE HETEROGENOUS TRACK-TO-TRACK FUSION

To illustrate the effect of the crosscovariance, consider

the simple homogeneous T2TF in the linear-Gaussian and

symmetric case with the local track covariance matrices P 1
S =

P 2
S = PS and the crosscovariance matrices P 12

S = P 21
S = PX

S .

The resulting fused estimate and its covariance matrix are [3]

x̂F
S =

1

2
(x̂1

S + x̂2
S) (10)

PF
S = P 1

S − (P 2
S − P 12

S )

− ·(P 1
S + P 2

S − P 12
S − P 21

S )−1(P 1
S − P 21

S )

=
1

2
PS +

1

2
PX
S (11)

In this case the fused estimate x̂F
S in (10) is independent of the

crosscovariance because of the assumed symmetry. However,

the corresponding covariance PF
S in (11) has a term that

depends on the crosscovariance. If PX
S > 0, the fusion is

optimistic if one ignores the crosscovariance (in which case

the fuser calculated covariance is 1
2PS , i.e., smaller than what

it should be); if PX
S < 0, the fusion is pessimistic.

The crosscovariance for homogeneous fusion follows from

a Lyapunov equation [3] and, consequently, it is always

positive semi-definite. In the heterogeneous case while there

is no known way to compute the crosscovariance matrix,

shown in Appendix A using MC simulations, some of the

crosscorrelations are positive and some are negative. They

depend on the relative geometry of the two sensors and the

target, as well as the target maneuvers. To further complicate

the situation, the maneuvers are unknown deterministic, rather

than (zero-mean white) process noise and the crosscovariance

1Generalization to asynchronous sensors is possible [10], but the notations
become very cumbersome.

based on the process noise can be substantially different from

what the maneuver causes.

The following subsections present two fusers that assume

the crosscovariance is available.

A. The LMMSE Fuser

The first approach to heterogeneous T2TF is to use the linear

technique based on the fundamental equations of LMMSE

estimation [2]. Considering the full state estimate x̂i as the

prediction and the smaller state estimate x̂j as the measure-

ment, we have the LMMSE fused estimate

x̂i
LMMSE = x̂i + PX(PZ)−1

[
x̂j − g

(
x̂i
)]

(12)

with the corresponding fused covariance matrix

P i
LMMSE = P i − PX(PZ)−1PX Δ

= PF (13)

where

PX Δ
= E

[(
xi − x̂i

) (
x̂j − g(x̂i)

)′]
≈ P i(Gi)′ − P ij (14)

PZ Δ
= E

[(
x̂j − g(x̂i)

) (
x̂j − g(x̂i)

)′]
≈ P j −GiP ij − P ji(Gi)′ +GiP i(Gi)′ (15)

where Gi is the Jacobian of g(xi)

Gi Δ
=

[∇xig(xi)′
]′ |xi=x̂i (16)

and P ij is the crosscovariance matrix

P ij Δ
= E[(xi − x̂i)(xj − x̂j)′] (17)

B. The ML Fuser

Under the Gaussian assumption, the heterogeneous T2TF

problem can be solved by minimumizing the negative log-

likelihood function2

L = −ln p(x̂i, x̂j |xi)

∝
⎛
⎝
⎡
⎣ x̂i

x̂j

⎤
⎦−

⎡
⎣ xi

xj

⎤
⎦
⎞
⎠

′

P−1

⎛
⎝

⎡
⎣ x̂i

x̂j

⎤
⎦−

⎡
⎣ xi

xj

⎤
⎦
⎞
⎠(18)

where (7) has been used and

P =

[
P i P ij

P ji P j

]
(19)

Then the ML fused estimate is the solution of

∇xiL = 0 (20)

Because of the nonlinearity of the function g(xi), there is

no explicit expression for the solution of (20). It can be solved

by a numerical search, e.g., the gradient projection algorithm.

The result is denoted as x̂i
ML and the corresponding covariance

matrix is

P i
ML =

([
I Gi

]
P−1

[
I
Gi

])−1

(21)

2As it is pointed out in [4], the LMMSE T2TF approach is, in the linear
Gaussian case, optimal in ML sense.
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where Gi is defined in (16) and I is the identity matrix (4×4
in our case).

The results of x̂i
LMMSE with P i

LMMSE and x̂i
ML with P i

ML will

be examined and compared with the CTF which processes all

the measurements (from both the active and the passive sensor)

in the FC in the simulation section.

IV. THE CROSSCORRELATION IN HETEROGENEOUS

FUSION

It has been recognized that, although different local sensors

typically have independent measurement noises, the process

noises for the motion models at these sensors belong to the

same target and, consequently, will lead to (cross)correlated

state estimation errors. This is the so-called “common process

noise effect” [3]. For the heterogenous case, the common

process noise effect, as it is embedded into the estimates from

different sensors for the same target, also exists. However,

since the estimates are in different state spaces, there is no

known way to capture the “common” part exactly.

The dependence of the estimation errors can be quantified

by the crosscovariance matrix, and the more accurately the

crosscovariance matrix is obtained, the better the heteroge-

neous track-to-track fusion performance will be. However, the

difference between the motion models for different sensors

prohibits the evaluation of the crosscovariance matrix by the

exact method described in [3] (limited to the homogeneous

case and linear systems). Even this exact method is not con-

sidered practical since it requires information that is typically

not available at the FC (the local filter gains).

While process noise is used in the motion equations to

model the target maneuvers3, these maneuvers are, however,

not stochastic process. Consequently, MC simulations will be

used to evaluate the crosscorrelation of the estimation errors

from different sensors. As shown in Appendix A, considering

the estimates from different local sensors in each MC run as

one sample and evaluating the sample crosscorrelation coeffi-

cients, we observe both negative and positive crosscorrelations

of the estimation errors from the heterogeneous local sensors

in different parts of the target trajectory.

The fact that these crosscorrelations can be, unlike in the

linear homogeneous case (when they are always positive),

sometimes positive and sometimes negative is shown as fol-

lows. According to the (13), the information matrix (assuming

we have P ij and G is the Jacobian for conciseness) is

J = (PF )−1

Δ
= [P i−[P i(Gi)′−P ij ]

− ·[P j+GiP i(Gi)′+U ]−1[P i(Gi)′−P ij ]′]−1 (22)

where

U
Δ
= −GiP ij−P ji(Gi)′ (23)

Assuming P ij = 0 (its elements are all zero), designated

as the “uncorrelated” assumption (denoted concisely as “un-

corr”), then (22) can be simplified (by the matrix inversion

3The whiteness is necessary so the state is a Markov process, a sine qua
non prerequisite for any recursive estimation algorithm [2].

lemma) as

J(P ij=0) = [P i−P i(Gi)′[P j+GiP i(Gi)′]−1Gi(P i)′]
−1

= (P i)−1−[(P i)−1P i(Gi)′]

− ·[Gi(P i)′(P i)−1P i(Gi)′−P j−GiP i(Gi)′]−1[(P i)−1P i(Gi)′]′

= (P i)−1+(Gi)′(P j)−1Gi (24)

If P ij �= 0 (this is denoted as “corr” for conciseness), then

we have

J(P ij �=0) = (P i)−1−[(Gi)′−(P i)−1P ij ]

· ·[[P i(Gi)′−P ij ]′(P i)−1[P i(Gi)′−P ij ]−[P j+GiP i(Gi)′+U ]]
−1

· ·[(Gi)′−(P i)−1P ij ]′

Δ
= (P i)−1+[(Gi)′−(P i)−1P ij ][P j+W ]−1[(Gi)′−(P i)−1P ij ]′ (25)

where

W
Δ
= [GiP i(Gi)′+U ]−[P i(Gi)′−P ij ]′(P i)−1[P i(Gi)′−P ij ]

= −P ji(P i)−1P ij (26)

Equation (25) can be written as (the generic matrix inversion

lemma is used)

J(P ij �=0) = (P i)−1+[(Gi)′−(P i)−1P ij ]

· ·[(P j)−1−(P j)−1W (P j)−1[I+W (P j)−1]−1][(Gi)′−(P i)−1P ij ]′

Δ
= (P i)−1+[(Gi)′−(P i)−1P ij ][(P j)−1−K][(Gi)′−(P i)−1P ij ]′

Δ
= (P i)−1+(Gi)′(P j)−1Gi−Kc

= J(P ij=0)−Kc (27)

where I is the identity matrix and

K
Δ
= (P j)−1W (P j)−1[I+W (P j)−1]−1 (28)

Kc

Δ
= [(Gi)′−(P i)−1P ij ]K[(Gi)′−(P i)−1P ij ]′

− +(P i)−1P ij(P j)−1Gi+[(P i)−1P ij(P j)−1(Gi)]′

− −[(P i)−1P ij ](P j)−1[(P i)−1P ij ]′ (29)

Setting P ij = 0 and P ij �= 0 for the estimation from

the heterogenous local sensors correspond to “uncorr” and

“corr” assumptions, respectively. For the homogeneous case,

the crosscovariance matrix is always positive; this follows

from the Lyapunov equation (9.3.2-3) in [3]. However, in

the heterogeneous (and nonlinear) case, Kc may be indefinite

(some eigenvalues are positive and some negative). Therefore,

accounting for it (as opposed to assuming it zero) yields the

exact (optimal) variance larger in some state components and

smaller in others.

A procedure to account for the crosscovariance of the esti-

mation errors (x̃i and x̃j) by using a simple functional model

of their crosscorrelations (based on the polar-to-Cartesian

transformation) is described in [12]. However, this did not

provide any perceivable benefits. Thus, since the maneuvers

are unknown and scenario dependent, we pursue the heteroge-

neous T2TF without considering the crosscorrelation between

the estimation errors.
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V. SIMULATION RESULTS

A typical 2-dimensional scenario for heterogenous T2TF is

with an active sensor located at (xa, ya), with measurements

of target range and azimuth angle

r =
√

(x− xa)2 + (y − ya)2 + wr (30)

θa = tan−1

(
y − ya
x− xa

)
+ wa (31)

and a passive sensor located at (xp, yp), with the azimuth

angle measurements

θp = tan−1

(
y − yp
x− xp

)
+ wp (32)

where wr, wa and wp are mutually independent zero mean

Gaussian noises with standard deviations (SD) σr, σa and σp,

respectively.

The ground truth is a target moving with a constant speed

of 250m/s with initial state in Cartesian coordinates (with

position in m)

xi(0) = [ x(0) ẋ(0) y(0) ẏ(0) ]′

= [ 0 0 20000 250 ]′ (33)

At t = 100 s it starts a left turn of 2◦/s (about 30mrad/s) for

30 s, then continues straight until t = 200 s, at which time it

turns right with 1◦/s for 45 s, then left with 1◦/s for 90 s, then

right with 1◦/s for 45 s, then continues straight until 50 s.

The measurements of the active sensor located at (−6 ·
104, 2 · 104)m are made every Ta = 5 s and starting from

k = 0 with measurement noise σr = 20m and σa =
5mrad. The measurements of the passive sensor located at

(−5 · 104, 4 · 104)m are made every Tp = 1 s and starting

from k = 0 with measurement noise σp = 0.5mrad. This

scenario is shown in Fig.1.

−7 −6 −5 −4 −3 −2 −1 0 1

x 104

2

3

4

5

6

7

8

9
x 104

100s

130s

200s

245s

335s380s

The Scenario and Sample Active Sensor Measurements

X (m)

Y
 (m

)

Active sensor
Passive sensor
True trajectory
Active sensor measurement
Turning point

Figure 1: The scenario.

In order to cover the uniform motion segments and ma-

neuvering segments in the trajectory, the active sensor uses

an interacting multiple model (IMM, more precisely, the

IMM with coordinated turn, i.e., IMM-CT) estimator, using

continuous time white noise acceleration (CWNA) model [2],

with two modes with different process noise levels. For reasons

shown in Appendix B, a linear Kalman filter (KF), using a

continuous time Wiener process acceleration (CWPA) model

[2], is used for the passive sensor.

For the active sensor, we first use an unbiased measurement

conversion from polar coordinates to Cartesian coordinates [2].

As assuming a nearly “coordinated turn” (CT) model, the state

vector is augmented as (note that xi is the state of interest for

further heterogeneous T2TF)

xi
a(k)

Δ
= [ x(k) ẋ(k) y(k) ẏ(k) Ω(k) ]′

= [ xi(k)′ Ω(k) ]′ (34)

The discretized CWNA model [2] with the augmented state

vector is

xi
a(k + 1) = F i

a(k)x
i
a(k) + vi

a(k) (35)

zia(k) = hi
a[x

i
a(k)] +wi

a(k) (36)

where, with Ta the sampling interval of the active sensor,

F i
a(k)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 sinΩ(k)Ta

Ω(k) 0 − 1−cosΩ(k)Ta

Ω(k) 0

0 cosΩ(k)Ta 0 − sinΩ(k)Ta 0

0 cosΩ(k)Ta

Ω(k) 1 sinΩ(k)Ta

Ω(k) 0

0 sinΩ(k)Ta 0 cosΩ(k)Ta 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(37)

hi
a[·] = tan−1 y(k)− ya(k)

x(k)− xa(k)
(38)

and the the covariance matrix of the process noise is

Qi
a(k)

Δ
= E

[
vi
a(k)v

i
a(k)

′]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
T3
a
3

T2
a
2

T2
a
2 Ta

]
qa 02×2 0

02×2

⎡
⎣

T3
a
3

T2
a
2

T2
a
2 Ta

⎤
⎦qa 0

0 0 TaqΩ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(39)

where the continuous time process noise “intensities” qa and

qΩ are the power spectral densities (PSD). Note that the

process noise induced root mean square (RMS) change rate

in the velocity and in the turn rate over a sampling interval

Ta are

da
Δ
=

√
qaTa

Ta
dΩ

Δ
=

√
qΩTa

Ta
(40)

whose physical dimensions are linear and turn acceleration

[11]. These are the design values used to select the process

noise PSD.

As the CT model described in (35) is nonlinear, EKF

has been used as the mode-matched filter for IMM-CT (the

detailed EKF equations can be found in [2]). We only use the

estimate x̂i(k) (from x̂i
a(k)) and the corresponding covariance

matrix P i(k) for the fusion.

For the active sensor IMM-CT, the process noises design

values are summarized in Table I.

Table I: The RMS change rate due to process noise

da [(m/s)/s] dΩ [(mrad/s)/s]

Mode 1 0.03 0.05

Mode 2 4 0.5

The transition probability matrix of the IMM-CT estimator

used at the active sensor is (based on the mean sojourn time
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[2])

πCT =

[
0.8 0.2
0.2 0.8

]
(41)

with initial mode probability vector [ 0.7, 0.3 ].
As pointed out in Appendix C, the target maneuvering index

for the passive sensor is very small. Consequently, a single

model filter (i.e., a KF) has been chosen as the local estimator

for the passive sensor, with the state vector

xj
p

Δ
= [ θ θ̇ θ̈ ]′ = [ xj(k)′ θ̈ ]′ (42)

the (discretized) CWPA model [2] in the angle, angle rate and

angle acceleration space is

xj
p(k + 1) = F j

px
j
p(k) + vj

p(k) (43)

zjp(k) = Hj
px

j
p(k) +wj

p(k) (44)

where, with Tp the sampling interval of the passive sensor,

F j
p =

⎡
⎣1 Tp

T 2
p

2
0 1 Tp

0 0 1

⎤
⎦ (45)

Hj
p = [ 1 0 0 ]′ (46)

and the covariance matrix of the process noise is

Qi
p(k)

Δ
= E

[
vj
p(k)v

j
p(k)

′]

=

⎡
⎢⎢⎣

T 5
p

20

T 4
p

8

T 3
p

6
T 4
p

8

T 3
p

3

T 2
p

2
T 3
p

6

T 2
p

2 Tp

⎤
⎥⎥⎦ qp (47)

Note that for the PSD qp, the process noise induced RMS

change in the angular acceleration over Tp is

dp
Δ
=

√
qpTp

Tp
(48)

whose physical dimension is angular jerk (derivative of accel-

eration).

The process noise design value chosen for the passive sensor

is dp = 0.04 [(mrad/s2)/s]. We only use the estimate x̂j(k)
(from x̂j

p(k)) and the corresponding covariance matrix P j(k)
for the fusion.

The LMMSE and ML heterogeneous T2TF are carried out

at the FC every Tf = 5 s under the “uncorr” assumption, with

the local estimates x̂i(k) (from x̂i
a(k)) and x̂j(k) (from x̂j

p(k))
and their corresponding covariance matrices P i(k) and P j(k).
The CTF uses the same IMM design (CTF IMM for short) as

the active sensor IMM and uses parallel updating technique

when both active and passive measurements are received at

the same time [3]. The FC can run the fusion at an arbitrarily

low rate or “on demand”.

A. The LMMSE Fuser

In Figs. 2 and 3, the root mean square errors (RMSE) for the

LMMSE fuser (with Tf = 5 s under the “uncorr” assumption)

are compared with those for the active sensor’s IMM estimator

and the CTF IMM in position and velocity, respectively. It

can be seen that the LMMSE heterogeneous T2TF approach

always provides significantly better estimation performance

than the single (active) sensor case.

The LMMSE heterogeneous T2TF provides larger RMSE

than the CTF IMM in the non-maneuvering intervals but

smaller RMSE if there is a maneuver. This degradation of

the CTF in both position and velocity during the maneuvering

intervals is because the CTF is using an IMM estimator,

which is inappropriate for the passive sensor (due to the very

small maneuver index). While using the IMM estimator is

generally beneficial for maneuvering targets, the use of an

IMM estimator with a sensor that cannot “see” the maneuvers

can lead to performance degradation (the CTF IMM’s perfor-

mance at some fusion points is even worse than the active

sensor IMM’s). As shown in Appendix B, the maneuvering

index from the passive sensor’s view is so small that when

the passive sensor measurements (with higher sampling rate

than those of the active sensor) are sent to FC and processed

centrally, these measurements increase the uncertainty about

the target maneuvers.

The observation from Figs. 2 and 3 that CTF IMM performs

during target maneuvers worse than the heterogeneous T2TF

points out that the heterogeneous T2TF benefits from the

freedom of having more suitable filters for the individual local

sensors. This freedom can provide final fusion results compa-

rable or even better than the corresponding CTF estimator.
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Figure 2: The position RMSE for LMMSE fuser.
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Figure 3: The velocity RMSE for LMMSE fuser.

We evaluate the fusion consistency of the LMMSE fuser by

the normalized estimation error square (NEES) consistency

test [2]. The NEES for the LMMSE fusion approach are
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shown in Fig. 4. The reason for the inconsistency of the fused

estimates are (i) the local IMM estimator (for the active

sensor) and the KF estimator (for the passive sensor) are

not entirely consistent4 (as shown in Appendix C) and (ii)

the crosscovariance has been assumed zero. Nevertheless, the

quality of the estimates is improved by fusion, which justifies

the approach. At this point, there is no known way to improve

the sometimes optimistic, sometimes pessimistic behavior of

the IMM — it is the inconsistency that drives its adaptation.
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Figure 4: The NEES for LMMSE fuser.

B. The ML Fuser

Using a numerical search (the gradient projection algo-

rithm), the RMSE in position and velocity for the ML fuser are

shown (with Tf = 5 s under the “uncorr” assumption) in Fig. 5

and Fig. 6, respectively. It can be seen that both the LMMSE

fuser and the ML fuser give nearly the same RMSE in position

and velocity and both have better performances than the single

(active) sensor case. As pointed out in [4], the LMMSE fuser

is, in the linear-Gaussian case, actually optimal in the ML

sense. Since the ML fuser in the heterogenous case (with

nonlinearity) needs to be implemented by a time-consuming

numerical search, the LMMSE fuser can be considered as an

efficient and effective alternative for the ML fuser.
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Figure 5: The position RMSE for ML fuser.

4The IMM estimator is the worst estimator in terms of consistency except
for all the other estimators [3]. However, it is the “short term” inconsistency
that is the key for the capability of the IMM estimator to adapt itself to the
observed behavior of the target (large innovations).
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Figure 6: The velocity RMSE for ML fuser.

VI. CONCLUSIONS

Examining the differences between the heterogeneous and

homogeneous T2TF, this paper investigates the major diffi-

culties of heterogenous T2TF. The LMMSE and the ML ap-

proaches for heterogenous T2TF are presented and compared

with the corresponding CTF. The simulation study shows

that both approaches can effectively achieve improved perfor-

mance over the single sensor track quality and comparable

performance to the CTF track. The use of IMM estimator

when there is no need for it (to process the measurements

from the passive sensor in the case considered) can lead

to performance degradation of the CTF. On the other hand,

the freedom available to each local sensor to flexibly design

a more suitable local estimator allows the heterogeneous

T2TF approach to achieve a better estimation performance.

As the LMMSE T2TF has practically the same performance

as the ML T2TF, it can be considered as an effective and

efficient alternative for the numerical search required by the

ML approach. The estimation errors’ crosscorrelation has been

examined by MC simulations. As it is impossible to predict

maneuvers in a trajectory and there is no known way to

correctly quantify the crosscorrelation of the estimation errors

from heterogeneous local sensors, the heterogeneous T2TF

was carried out assuming the tracks from the heterogeneous

local sensors as uncorrelated.

APPENDIX A

THE MC RESULTS FOR THE SAMPLE CROSSCORRELATION

The sample crosscorrelation coefficient between the lth
component of xi and the hth component of xj in M MC runs

at a particular point in time (not indicated, for conciseness) is

ρ̂M
xi
lx

j
h

Δ
=

∑M
m=1(x̂

i
l,m − xi

l)(x̂
j
h,m − xi

h)√[∑M
m=1(x̂

i
l,m − xi

l)
2
] [∑M

m=1(x̂
j
h,m − xj

h)
2
] (49)

The sample crosscorrelation coefficients of different hetero-

geneous components from 1000 MC runs, for the scenario

described in Section V, are shown in Figs. 7–10. It can

be seen that the “common process noise effect”, driven by

real maneuvers here, leads to significant crosscorrelation be-

tween the estimation errors from the heterogeneous local sen-

sors. Furthermore, both positive and negative crosscorrelation
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are observed. This motivates the geometry-based “functional

model” discussed in [12].
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Figure 7: The sample crosscorrelation analysis for x̃ and ỹ

with θ̃ and
˜̇
θ.
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Figure 8: The sample crosscorrelation analysis for ˜̇x and ˜̇y

with θ̃ and
˜̇
θ.

0 100 200 300 400 500
−1

−0.5

0

0.5

1

time (s)

sample crosscorrelation coefficient, 1000 MC runs

˜̇x and θ̃
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Figure 9: The sample crosscorrelation analysis for ˜̇x and ỹ

with θ̃ and
˜̇
θ.

APPENDIX B

THE CHOICE OF ESTIMATOR FOR THE PASSIVE SENSOR

The guideline for deciding whether to use an IMM estimator

or a (single model) KF can be quantified in terms of the target

maneuvering index, which is the ratio between the standard

deviation (RMS values) of the motion uncertainty and the
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Figure 10: The sample crosscorrelation analysis for x̃ and ˜̇y

with θ̃ and
˜̇
θ.
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Figure 11: The illustrated scenario for calculating target

maneuvering index.

measurement uncertainty [2] [7]. Namely, if this index is below

0.5 then there is no point in using an IMM.

For the passive sensor considered, the maneuvering index

can be calculated as follows. As shown in Fig. 11, the angular

velocity seen by the passive sensor is

θ̇p =
V sinϕ

rp
(50)

where V is the speed of the target and rp is the range of the

target from the passive sensor. Then the angular acceleration

seen by the passive sensor is

θ̈p =
V cosϕ

rp
ϕ̇ (51)

where ϕ̇ is the target turn rate.

The RMS effect of (51) on the (angular) position, i.e., the

angular displacement over sampling interval Tp (multiplied by

2) is θ̈p T
2
p . The (target’s true) maneuvering index, with the

passive sensor noise SD σp (in radians), is the (physically

dimensionless) quantity

λp =
θ̈p T

2
p

σp
=

ϕ̇T 2
p V cosϕ

σprp
(52)

For the scenario described in the simulation section, with

V = 250m/s, cosϕ ≈ 0.8, rp ≈ 5 · 104 m, Tp = 1 s, σp =
0.5mrad and ϕ̇ ≈ 30mrad/s (which is the maximum target

turn rate in our simulation scenario), we have λp ≈ 0.24. This

small target maneuvering index (less than 0.5) leads to the

choice of a KF for the passive sensor, as done in Section V.
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APPENDIX C

THE LOCAL ESTIMATOR’S CONSISTENCY

The NEES for the active sensor’s IMM and for the passive

sensor’s KF are shown in Figs. 12 and 13, respectively. The

lack of consistency of the passive sensor KF is due to the

maneuvers. The lack of consistency of the active sensor IMM

is common and this is due to its (unavoidable delay) in the

adaptation. The IMM is “pessimistic” during the no-maneuver

intervals and “optimistic” when a maneuver starts or ends until

it “catches up”. This is the typical behavior of the IMM, which

is still superior to any single-model based filter.
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Figure 12: The NEES for active sensor IMM.
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Figure 13: The NEES for passive sensor KF.
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